LESSON 3.3a

Introduction to Completing the Square

Today you will:

- Get more practice solving quadratic equations using square roots.
- Learn/review what a *perfect square trinomial* is.
- Learn what *completing the square* is and how to use it.
- Solve quadratic equations $x^2 + bx + c = 0$ (a = 1) by completing the square

Core Vocabulary:

- Perfect square trinomial
- Completing the square, p. 112

What is a "perfect square?"

- A number that can be expressed as the product of two equal integers.
- ...a number that is the square of an integer.

Can you think of some examples?

- 4 (2 * 2)
- 9 (3 * 3)
- 121 (11 * 11)
- 529 (23 * 23)

What is a "trinomial?"

• An expression with three terms connected with plus and/or minus.

Can you think of some examples?

•
$$x^2 + 3x + 2$$

•
$$5x^2 - 2x + 12$$

(these are both quadratics ... note that a trinomial does not need to be a quadratic)

What is a "perfect square trinomial?"

• A trinomial that can be factored into a binomial multiplied by itself.

(what is a binomial? ... an expression with two terms connected with plus and/or minus)

Examples:

•
$$x^2 + 4x + 4 = (x + 2)(x + 2) = (x + 2)^2$$

•
$$x^2 - 6x + 9 = (x - 3)(x - 3) = (x - 3)^2$$

Solve
$$(x - 8)^2 = 100$$

$$(x-8)^2=100$$

$$\sqrt{(x-8)^2} = \sqrt{100}$$

$$x - 8 = \pm 10$$

$$x = 8 \pm 10$$

ANOTHER WAY

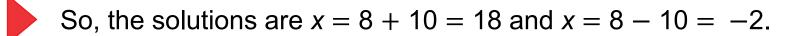
You can also solve the equation by writing it in standard form as $x^2 - 16x - 36 = 0$ and factoring.

Solve $x^2 - 16x + 64 = 100$ using square roots.

SOLUTION

$$x^2 - 16x + 64 = 100$$
 Wri
 $(x - 8)^2 = 100$ Wri

$$x - 8 = \pm 10$$


$$x = 8 \pm 10$$

Write the equation.

Write the left side as a binomial squared.

Take square root of each side.

Add 8 to each side.

What would I have to add to $x^2 + 4x$ to make it a perfect square trinomial?

In other words given $x^2 + 4x + c$, what would c have to be to make it a perfect square trinomial?

Let's think about this:

- In $x^2 + bx + c$ remember we have said that b = p + q and $c = p \cdot q$
- ...here we are wanting to make a perfect square trinomial...
- ...what does that mean/say about p and q?
 - Well, c will need to be a perfect square ... which means $c=p^2$... in other words p=q
 - If $c = p \cdot p$ (and p = q) what can we say about b?
 - b=p+q and if p=q then b=p+p=2p

In this problem b=4 which means 4=2p so p=2. Take b, divide it in two, then multiply it by itself... So $c=2\cdot 2=4$

To make
$$x^2 + bx + c$$
 a perfect square $c = \left(\frac{b}{2}\right)^2$

COMPLETING THE SQUARE

To complete the square for the expression $x^2 + bx$, add $\left(\frac{b}{2}\right)^2$:

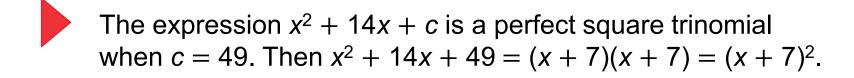
$$x^{2} + bx + \left(\frac{b}{2}\right)^{2} = \left(x + \frac{b}{2}\right)\left(x + \frac{b}{2}\right) = \left(x + \frac{b}{2}\right)^{2}$$

Example: Complete the Square for $x^2 + 18x$ (make it a perfect square trinomial)

$$b = 18$$

$$c = \left(\frac{b}{2}\right)^2 = \left(\frac{18}{2}\right)^2 = 9^2 = 81$$

So the answer is: $x^2 + 18x + 81$


Find the value of c that makes $x^2 + 14x + c$ a perfect square trinomial. Then write the expression as the square of a binomial.

SOLUTION

Step 1 Find half the coefficient of x.
$$\frac{14}{2} = 7$$

Step 2 Square the result of Step 1.
$$7^2 = 49$$

Step 3 Replace *c* with the result of Step 2.
$$x^2 + 14x + 49$$

Using COMPLETING THE SQUARE to solve a quadratic

Solve
$$x^2 - 18x + 5 = 0$$
:

$$x^{2} - 18x + 5 = 0$$

$$-5 - 5$$

$$x^{2} - 18x = -1$$

First move the +5 to the other side...

...now complete the square

$$b = 18$$

$$c = \left(\frac{b}{2}\right)^2 = \left(\frac{-18}{2}\right)^2 = (-9)^2 = 81$$

$$x^2 - 18x + 81 = -5 + 81$$

If you add to one side, you *MUST* add to the other

$$x^2 - 18x + 81 = 76$$

$$x^2 - 18x + 81 = 76$$
 ...now factor and solve...

$$(x-9)(x-9) = 76$$

$$(x-9)^2 = 76$$

$$\sqrt{(x-9)^2} = \pm \sqrt{76}$$

$$x - 9 = \pm \sqrt{4 \cdot 19}$$

$$x = 9 \pm 2\sqrt{19}$$

LOOKING FOR STRUCTURE

Notice you cannot solve the equation by factoring because $x^2 - 10x + 7$ is not factorable as a product of binomials. Solve $x^2 - 10x + 7 = 0$ by completing the square.

SOLUTION

$$x^2 - 10x + 7 = 0$$

$$x^2 - 10x = -7$$

$$x^2 - 10x + 25 = -7 + 25$$

$$(x-5)^2=18$$

$$x - 5 = \pm \sqrt{18}$$

$$x = 5 \pm \sqrt{18}$$

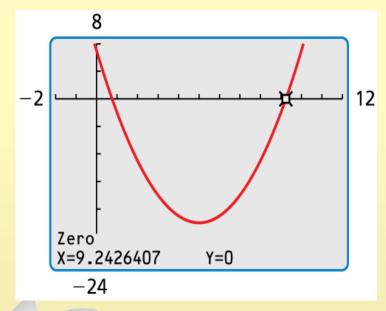
$$x = 5 \pm 3\sqrt{2}$$

Write the equation.

Write left side in the form $x^2 + bx$.

Add
$$\left(\frac{b}{2}\right)^2 = \left(\frac{-10}{2}\right)^2 = 25$$
 to each side.

Write left side as a binomial squared.


Take square root of each side.

Add 5 to each side.

Simplify radical.

The solutions are $x = 5 + 3\sqrt{2}$ and $x = 5 - 3\sqrt{2}$. You can check this by graphing $y = x^2 - 10x + 7$. The x-intercepts are about $9.24 \approx 5 + 3\sqrt{2}$ and $0.76 \approx 5 - 3\sqrt{2}$.

Homework

Pg 116 #1-20, 25-30